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Received 28 February 1994 

Abstract. A new critical-amplihzde relation which holds for one-dimensional guanNm ground- 
smte transitions is presented. The relation yields an estimate ofthe sound velocity which appears 
in the conformal field theov as an a priori unknown parameter. With the use of this relation, 
the exponent q can be explicitly determined from only the scaling fit of lhe off-critical energy 
gdp. The relation is confirmed in the transverse Ising model, the S = f anisotropic XY model. 
and the three-state Pom model. 

1. Introduction 

Since the application of the conformal field theory [l-31 to the finite-size scaling [4], it has 
become an important backup to numerical analyses on phase transitions of two-dimensional 
systems. One of the remarkable results is the fact 141 that the correlation length of a 
sbip at the critical point is related to Fisher’s exponent q [5 ]  in the form 

6,i ’  2: n q f ~  for L >> I (1) 
where L denotes the width of the strip. 

The theory may be applicable to the ground-state transition in one dimension. It is 
because a one-dimensional quantum system of size L at zero temperature is mapped to an 
infinite strip of the relevant two-dimensional classical system. The correlation length of 
the classical system is then translated to that of the quantum system in the imaginary-time 
direction, er, or equivalently [6], to the reciprocal of the energy gap A E ( L )  above the 
ground state. 

However, we cannot directly estimate the exponent q in the quantum case, because the 
relation (1) does not hold as it is; it should be modified to include a parameter called the 
‘sound velocity’ vs [7] 

6;’ = A E ( L )  v , n q / L  for L >> 1 (2) 
at the critical point. The sound velocity depends on the overall factor of the Hamiltonian, 
and is not known a priori. 

In the present paper we introduce a new critical-amplitude relation which emerges in 
scaling of the energy gap of conformally invariant systems. A ratio of two coefficients in 
the scaling function equals the sound velocity us. Thus we can eliminate uI from (2), and 
obtain a universal critical-amplitude ratio which gives the exponent q .  (For a review on 
critical-amplitude ratios, see [SI.) 

We can utilize this amplitude relation in order to estimate the sound velocity us and 
the exponent r~ numerically. We would like to stress here that the present method of the 
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estimation is based only on the information of the energy gap between the ground state 
and the first excited state. Once we calculate the first energy gap for various sizes and 
parameters, its scaling fit alone yields the critical point, the exponent v and the exponent 
0 in this order. Note that these three estimates complete the information on the critical 
properties; we can obtain the other critical exponents by using scaling relations. 

Some methods of estimating us and 0 have been proposed so far. One is to construct 
the so-called virtual-space transfer matrix [91. Consider an infinite quantum system at finite 
temperatures. It can be mapped to a strip which is finite in the imaginary-time direction 
and is infinite in the space direction. The virtual-space transfer matrix transfers states in the 
space direction. The conformal field theory also predicts that the correlation length in the 
space direction is given by 

for T - 0 (3) 
rrl ex-‘ = -T 

near the critical point. Multiplication of the coefficients in (2 )  and (3) yields an estimate of 

Another method of estimating the sound velocity U, is to calculate higher excited states. 
The conformal field theory also predicts that there is a series of energy levels which has the 
Structure 

rl [101. 

AE,(L) = - for L >> 1 (4) 

at the critical point with (n) positive integers. If we can somehow find this so-called 
conformal-tower structure, the sound velocity us is estimated from AE1 - AEo [ 111. 

These previous methods need calculations additional to the estimation of the first energy 
gap. This is because these methods utilize data only at the critical point, off-critical data 
being discarded. In contrast, the present method adopts only data of the first energy gap, 
but those off the critical point. 

In section 2 we present our main results of the paper, namely the scaling form of the 
energy gap and the critical-amplitude relation. We derive the relation phenomenologically 
in section 3 and microscopically in section 4. We confirm the relation for three spin models: 
analytically in sections 5 and 6, and numerically in section 7. 

2. The scaling form of the energy gap 

Here we first present the asymptotic form of the scaling function of the first energy gap, 
and introduce the critical-amplitude relation. 

Let us denote the distance from the critical point by E .  We define its sign so that we 
may have the disordered phase, or the unique ground state for E > 0. In the region F c 0 
we may have the ordered phase, or degenerate ground states. 

We derive the following form of the scaling function: 
Ay + D+e-‘y for E > 0 

for E = 0 
for E .= 0 

where y denotes the scaling variable 
y = LIEI”. 

(Typical examples can be found in figures 3 and 5(bJ, and in [I?.].) 
The coefficients A,  B and C are appropriate constants. The prefactors D* of the 

exponential terms are some moderate functions of y.  (We find the behaviour D*(y) - f i  



Critical-amplitude relation for quantum transitionr 6079 

in sections 4-7 repeatedly. Here we do not investigate further whether this behaviour of 
the prefactors is universal.) 

We can understand the above scaling form (5) roughly as follows. 
The term Ay in the first line is due to the E dependence of the infinite-system energy 

(7) 

in the disordered phase, E > 0. This term does not exist in the third line, since we have 
AE(co) = 0 in the ordered phase, E i 0. 

The exponential terms in the first and the third lines of (5) express the asymptotic 
behaviour of the finite-size energy gap 

gap resulting from the energy-operator perturbation 

AE(cu) = tZ-’ N AS” 

A E ( L )  - AE(oo) - exp(-L/&) for L >> h >> 1 (8) 

where the correlation length has the following singularity: 

ts-’ N ClEl”. (9) 

We derive the expression (8) in section 4. 
The exponent in (7) and (9) may be different from U if we consider perturbation 

other than the energy-operator one; for example, it should be V I A  for the spin-operator 
perturbation, namely the magnetic field. In that case we define the scaling variable by 
y L l ~ l ” l ~  instead of y LIEI”; the arguments in the present paper remain intact except 
this redefinition. 

The main result in this paper is the following critical-amplitude relation: 

A I C  = u s .  (10) 

B = u 8 r q .  (11) 

The coefficient B,  on the other hand, is given by the prediction AE u $ ~ v / L ,  namely 

Using the relation (IO) we can eliminate the sound velocity from (11); thus we have the 
universal amplitude ratio 

B C I A  = KO. (12) 

Utilizing the scaling form (5) and the above amplitude relation, we propose a new 
method of estimating the exponent q. First, the L dependence of the scaled energy gap 
L A E ( L )  vanishes at the critical point, E = 0; see figure 5(u) in section 7, for example. 
Thus the crossing point of the plots of L A E ( L )  against E for various values of L yields 
a critical-point estimate [13,14]. This is the so-called phenomenological renormalization 
group. Next, we cany out the scaling fit by scaling E in the form y = Llel” as in figures 3 
and 5(6). This yields an estimate of U. We can also employ the analysis based on the ,3 
function [ 15, 161 in order to estimate U. Finally, the amplitude ratio B C / A  = P q introduced 
here gives an estimate of q. 

3. Phenomenological derivation 

In the present and the next sections we describe derivation of the amplitude relation 
A / C  = U, in two ways. Fit, let us discuss it phenomenologically in this section. 

Fist of all, the sound velocity vs appears in the formulation of the conformal field 
theory of quantum systems as follows. 
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It is necessary to the applicability of the conformal field theory to quantum systems that 
the dispersion relation of the relevant elementary excitations is linear near a gapless point 
ko, namely 

Then we can describe the low-energy and long-range property of the quantum critical system 
by means of the two-dimensional massless field theory. The real-space axis x and the 
imaginary-time axis r are interchangeable except for a conversion factor given by the ‘light 
cone’ x = v,r. Thus the theory of a onedimensional system at the quantum critical point 
is translated to the conformal field theory of an anisotropic two-dimensional system at its 
thermal critical point. 

Strictly speaking, the applicability of the conformal field theory holds only at the critical 
point; hence the theory involves only the exponent q and the sound velocity U,. However, 
we naturally expect that the physics in the critical region around the transition point is also 
equivalent to that of the anisotropic two-dimensional system. 

w ( k )  N &u,(k - ko) for E = 0 and k ~ b .  (13) 

On account of this expectation, we assume 

tX N U &  for E N  0 (14) 
see figure 1. The correlation stretches anisotropically near the critical point. The anisotropy 
of the spacetime may be specified by the sound velocity v,, and hence the above assumption 
follows. The assumption (14) relates the off-critical quantities tx and tr to the critical-point 
quantity U,; this is an essential point of the present paper. 

Since we define the critical amplitudes A and C in the relations e;’ N A&” and e;‘ N CE”, the assumption N U& is followed by the relation A / C  = up. 

z -vsPBvs Figure 1. The ellipse indicates a constant-correlation contour. 
The aniwvopy is due to the m u d  velocity U,, which is not 
uNty in gened. 

4. Microscopic derivation 

In this section we derive the asymptotic forms (7)-(9) with the relation A/C = U, more 
microscopically. 

Suppose that we effectively diagonalize the quantum Hamiltonian in terms of the relevant 
elementary excitations {e;, t k ]  in the momentum space. we may write the Hamiltonian of 
a finite system in the following form: 

(15) ‘H = c o ( k )  (e!& - EO) + irrelevant interactions. 
k 

F i s  should be considered as a definition of the elementary excitation rather than an 

are Fermions; they may be bosons [17] or para-Fermions [18].) The indices ( k )  denote the 
L reciprocal-lattice points; they are arranged at intervals of 2n/L 

assumption of the form of the Hamiltonian. It is unnecessary that the quasi-particles ( A ,  t tk) 

(16) 
iI 

k = z n  
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with In) even or odd integers. Their parity depends on whether we choose the ground state 
or the excited state. The difference in the parity results in the finite-size gap in (8) as shown 
below. 

The interactions in the above Hamiltonian (15) is irrelevant perturbation by definition; 
the elementary excitations is a free massless particle at the relevant fixed point, since the 
system has conformal symmetry. As the fixed point controls the universality, we may 
discuss critical properties leaving out the interaction term. Hence the ground-state energy 
near the critical point may be given only by the leading term 

(It was proved 1191 for the Tomonaga-Luttinger liquid [17,20,211 that the interaction does 
not break the criticality. It was also shown that the nonlinear U models with the Wess- 
Zumino term can be described by free para-Fermions [18].) 

Allowing for the critical dispersion relation w(k) = h , ( k  - ko), we assume the off- 
critical one in the form 

w(k)  Y ,,/in2 + vz(k - k# for k IT ka (18) 

m N A&’.  (1% 
The form (18) naturally appears when the two modes w = u,(k - ko) and w = -v,(k - ko) 
cross with the off-diagonal transition element m; see [22], for example. We can explicitly 
show that the conditions (15)-(19) are satisfied in the two solvable models in sections 5 
and 6. 

On one hand, the infinite-system energy gap A E ( m )  in the disordered phase originates 
in the excitation from the ground state IO) to the state ($,IO); it is given by the mass gap m 
in (19), or 

(20) 
We thus have the term Ay in the scaling form (5).  

On the other hand, the finite-size energy gap A E ( L )  is estimated as follows. (The 
estimation is based on the technique developed for the transverse king model [ 161.) 

Since the interval of the indices (k) is  2rr/L, the summation in (17) can be written in 
terms of an integral of the form 

with the mass gap 

A E ( w )  = m N A&”.  

where 

which is the Poisson summation formula. The constant h in (21) is either 0 or a / L ,  
depending on the parity of ( n )  in (16). 

The unity in the right-hand side of (22) corresponds to the energy in the thermodynamic 
limit, 

As will be self-evident below, the leading finitssize correction is given by the term I = 1 
in (22). Therefore the constant $0 in (21). 0 or a/L, results in the sign of the correction 
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77 
Figuw 2. The integration path in (24) is modified from the broken 
line to the full curve to yield ths estimate (25). The crosses are the 
branch points, and lhe wavy l i n e  are the branch cuts. 

-77 

1-fli 
term; the ground state and the excited state approach the thermodynamic limit (23) from 
below and above, respectively. The finite-size energy gap is thus estimated as 

except the term A&" in the disordered phase. 
The only singularity of w(k)  is given by the two branch points k = ka f imju, in the 

complex plane, as can be seen in (18). We hence modify the integration path as shown in 
figure 2. The integrals along the paths Rek = fn/2 cancel each other out owing to the 
periodicity w(k + 2%) = o ( k ) .  The integrals along the paths Imk > 1 are exponentially 
small because of the factor eiKL. We finally obtain 

N IcoskoLl E o e e x p  (-5) 
for L >> u,/m >> 1, except the term A E ( w )  LV_ A&" in the disordered phase. 

the scaling form (5). Comparing the above expression (25) with the form (8), we have 
Thus we obtain the finite-size energy gap in the form (8), or the exponential terms in 

Y m/us N 6;' / u s .  (26) 

Using the relation m N A&" and the definition 6;' 
A / C  = u s .  

C&", we again arrive at the relation 

5. The transverse king model 

Let us show, in sections 5 and 4, analytic conhat ion  of the amplitude relation in two 
exactly solvable examples, namely the transverse king model and the S = $ anisotropic 
XY model. These two models, after diagonalization, reduce to the form (15) without the 
interaction term, namely to the free-Fermion model. 

First, in this section we consider the transverse Ising model under the periodic boundary 
condition 
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- Figure 3. The scaling function of the 
energy gap for the transvme king model 
(27). The dotted line L A E  = Ay is the 

I , . , , I . 1 asymptote in the limit y + m. The data 
-4 -2 0 2 4 were calculved for J = I and L = IO4. 

The parameters are Y = I ,  A = 2. B = 
x/2 ,  C = 1 and D = .#7, 

- 
- 
1 

y=LlcjVsign(c) 

where 6 are the Pauli operators. We can argue [23] that the model is mapped to the 
anisotropic limit of the two-dimensional Ising model, using the Trotter formula. The two- 
dimensional king model at its critical point was identified with the critical model of the 
central charge c = 4 [I-31. 

We can solve the transverse king model exactly by means of the Jordan-Wigner 
transformation [24,25]. The critical point is given by E = 0, where E = r - J .  In 
the region E > 0 the ground state of the infinite system is unique; this is the disordered 
phase. In the region E e 0, on the other hand, ’the two pound states are degenerate, and 
hence the ordered phase. 

The dispersion relation is obtained [24,25] in the form 

(28) 
k - k o  

m2 + 4 4  sin’ - o ( k )  = J 2 

with the mass gap m E ZE,  the sound velocity U, E Zm, and the massless point 
ko G T. 

The scaling function of the energy gap is shown in figure 3. The infinite-system energy 
gap between the ground state 10) and the excited state $L IO) is given by AE(co) = m = A&” 
for E > 0 with A = 2 and U = 1. The finite-size gap in the critical region is estimated [16]t 
in the same form as (25) with Eo = 4. and hence we have C = 2/u, .  These coefficients A 
and C satisfy the relation A / C  = us. 

The finite-size energy gap at the critical point is exactly obtained [ 161 as 

= U, [cot(n/zL) - cosec (z/2L)] 
= u,tan(z/4L) for E = O  

t In 1161, we found errors which were rather typographid themselves but devastating to our results. In equations 
(3.11) and (4.13) of the reference, the arguments of the exponentials should be doubled. The con’ect expressions 
can be easily derived from (A1.16). 
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where we sum up the geometrical series to move from the second line to the third. This 
gives the coefficient B as B = u,n/4. Thus we can obtain q = using the formula 
B C / A  = zq. 

6. The S = f anisotropic XY model 

Next, in this section we show the confirmation of the amplitude relation in the S = 
anisotropic XY model 

L 
'H = - (Jxu;u;+l + JyU;u)+]) . (30) 

i = l  

This may be of the universality class of the two-dimensional plane-rotator model, which 
was identified with the model of the central charge c = 1 [3 ,26] .  

The S = 4 XY model is solvable by means of the Jordan-Wigner transformation [U] 
as well as the transverse king model. The isotropic point Jx = Jy  is the critical point; 
hence we define E 2 J, - Jx .  The energy spectrum is rather different from the case of 
the transverse Ising model. Both of the regions E > 0 and E < 0 are ordered phases; see 
figure 4. 

The dispersion relation is given [241 by 

o ( k )  = ,/mz + U: cosz k (31) 

with the mass gap m 4 m .  There are two massless 
points, namely ko = fn/2.  The elementaiy excitation with the mass m can be regarded as 
a kink. 

The infinite-system energy gap between IO) and :$O) is estimated as A.E(oo) = m = 
A&" with A = 2 and U = 1 for E # 0. Though the finite-size gap becomes twice as large as 

2E and the sound velocity U, 

30 - 

0 2 4 6 a 10 

y=LEV 

Figure 4. The scaling function of the energy gap for the anisotropic XI' model (30). The 
specmm is symmetric with respect to y = 0. The broken curve indicates the energy gap 
between the ground state of the periodic chain and that of the antiperiodic chain. The dotted 
lines L A E  = Ay and L A E  = 2Ay are the asymptotes. The data wen calculated for 3, = 1 
and L = le. The parameters me Y = 1 .  A = 2 ,  B =2n, C = 4 and D = 8 / f i .  
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in the unique-massless-point case (25). the coefficient C does not change from C = 2/u,. 
We thus confirm the relation A / C  = U, again. 

We can calculate the exact finite-size energy gap at the critical point similarly to the 
case of the transverse king model, (29). We obtain 

= us [cot@lL) - cosec (n/L)] 
= U, tan(rr/ZL) for E = 0 .  (32) 

We thus have B = u,x/2. We obtain the exponent v = 4 by using the formula B C / A  = r r ~ .  
Now we have to comment on the definition of the energy gap. As is shown in figure 4, 

the energy gap of the XY magnet under the periodic boundary condition is twice the mass 
gap: AE,,(w) = 2m. This is because the kinks of the magnet are always excited in 
pairs. If we employ this definition of the energy gap, we have A,, = 4. Then the relation 
A / C  = U, appears to be violated. On the contrary, excitation of a single kink is quite 
possible if the system is viewed as the Fermion system transformed from the magnetic 
system. The contradiction comes from the fact that the Jordan-Wigner transformation 
complicates the boundary condition. 

As we showed microscopically in section 4, the relation AIC = U, holds for each 
massless point. It is consistent in our theory to define the energy gap A E ( w )  as the mass 
of a single elementary excitation. Even in the magnet representation, we can excite a single 
kink by changing the boundary condition to the antiperiodic one. Then we have the energy 
gap AE(w) = AE” with A = 2. Actually, this gap equals the reciprocal of the correlation 
length of the ‘kink operator’ 

where 

Okink b / Z  - ( 0;) 00”. (34) 

The kink operator is local in the Fermion representation, though it is non-local in the magnet 
representation. The phenomenological argument in section 3 holds in the sense (33). 

In other words, we can detect how many elementary excitations constitute the energy 
gap of an infinite system. If a naive estimate of U, by the present method differs from other 
estimates by an integer factor, the integer is the number of the elementary excitations. This 
may be used to confirm the argument on the S = 4 antiferromagnetic Heisenberg chain by 
Faddeev and Takhtajan [27]. 

,=-ea 

7. The three-state Potts model 

Now we confirm the relation A / C  = vs numerically in the quantum version of the three- 
state Potts model. In contrast to the above S = 4 models, the one-dimensional quantum 
three-state Potts model is not a free-Fermion model presumably. Thus we can show that 
the interaction term in (15) is actually irrelevant to the present argument. 

We can write in the following form the quantum Hamiltonian corresponding to the 
three-state Potts model [28] 

+ R r R G , )  + r cos (FL,)] . 
i = l  

(35) 
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Here the operators R' and Li act on a spin state at the site. i, IlSi)] = {IO), [ I ) ,  IZ)), having 
the following matrix elements, respectively: 

R T = (  1 0 0 )  R ; = ( O  1 0 0  0 1 )  and 

After a unitary transformation we have 

0 0 1  0 1 0  

0 1 0  
(36) 

We can explicitly map this Hamiltonian to the two-dimensional thee-state Potts model, using 
the same technique as in the transverse king model [23]. The two-dimensional three-state 
Potts model was identified with the model of the central charge c = $ [3,29,30]. 

It has already been shown [31] that analyses of the first energy gap of the present model 
yielded very precise estimates of the critical point and the exponent v ,  namely 

Jc /  r = 1.00000 f 0.00005 and l / u  = 1.2000 f 0.0005. (38) 

These estimates agree quite well with the predictions Jc/  r = 1 and U = 2, which are based 
on the duality relation and the c = $ conformal field theory. We hence do not repeat the 
same analyses here; we just assume E = r - J and U = 2 in the following, and estimate 
the sound velocity us and the exponent q.  

We present our final estimates before mentioning details of our analysis. 
We estimated the coefficients A and C as 

A = 1.60008f0.00002 (39) 
and 

C = 1.243 =k 0.005. (40) 
We hence estimated the sound velocity U$ as 

U, = 1.287 i 0.005. (41) 
This is consistent with the estimate obtained by another method [32]t, U, N 5.44/2z x3/2 N 

1.299. The precision of the present estimate is comparable to the one in [32]. 
We also estimated the coefficient B = u,zq as 

B = 1.0874 f 0.0002. (42) 
This agrees with the previous estimate in [32], B N 0.725 x f N 1.088. 

Employing the formula B C / A  = rq, we finally estimated the exponent q as 
q = 0.269 i 0.001 . (43) 

This agrees with the conformal-field-theory prediction q = & = 0.266666.. . . 
Let us describe our data analysis in the following. We used the Lanczos method [33], 

and numerically diagonalized the systems of size up to L = 16. 
The phenomenological-renormalization-group plot and the scaling plot are given in 

figure 5 .  The plots are completely explained by the values r,/J = 1 and U = a. as 
expected. 

t Note that the normalization factor of the Hamiltonian given in 1321 is different !iom here. We have to multiply 
their Hamiltonian by 4 to obtain our HamiltoNan. 
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Figure 5. Scaling analysis for the quantum three-state Potts model: (a) the phenomenological- 
renormalization-group ploc L A E ( L )  versus r/J.  and @) the scaling plot, L A E ( L )  versus 
y = LIe1516. The data for I < L < 13 are shown here. The interval of the data points is 
A r  = 0.05. 

First, we estimated the coefficient A in the disordered phase as follows. We plotted 
the quantity Ar(y) = LAE(L)/y against y in the disordered phase. We expect from the 
scaling form (5) that the quantity A L ~ )  exponentially converges to the critical amplitude A 
in the limit y + M. However, it is not the case as is exemplified in figure 6; the quantity 
A L ( ~ )  once reaches its minimum AT at a certain point y = y$" (E 2.5 in the present 
case), and begins to increase. This irregularity is probably because the scaling region is 
limited to lyI < 2.5. We hence evaluated the minimum AT as an approximation of the 
coefficient A .  The quantity AT converges to the estimate (39) exponentially as L + CO; 

see figure 7. The error in (39) was evaluated by means of the least-squares fitting to a 
function of the form AT = A - CI exp(-czL). 

Next, we estimated the coefficient C in the ordered phase as follows. As was claimed 
below (6), we found that the linearity of the data log[LAE(L)I against y is much better 
when we assume the behaviour D- N f i  of the prefactor in the scaling form (5). We 
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Figure 6. The quantity A&) !ems y for L = 13. The minimum of A!r@) was estimated at 
AEm = 1.5994268 for y = y y  = 2.494. 

0.0100 

0.0050 
G 
‘2 ri 
-4 
I 

g 0.0010 
0 

0.0005 

L 
Figure 7. The exponential canvergence of AFm to the estimate (39), A = 1.60008. The full 
line denotes the fitting line, 

hence evaluated the following quantity in the ordered phase as an approximation of the 
coefficient C: 

C‘ - 

(Here the point yp is located in the ordered phase; we measured the coefficients A and C 
in the disordered phase and in the ordered phase, respectively, but at the same distance from 
the critical point.) The quantity converges to the estimate (40) exponentially as L -+ ca. 

Finally, we estimated the coefficient E .  The plot of the scaled energy gap LA.E(L) at 
the critical point rC/J = 1 manifests slight 1/L dependence of the data. The linear fitting 
to a function of the form L A E ( L )  = B + cg/L yielded the estimate (42). 

I , (44) 
l o g [ L A . E ( L ) / m ]  - log[(L - l ) A E ( L  - l)/d(L - 1)1&1”] 

LI&I” - ( L  - 1)1&1” F Y P  
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8. Summary 

We have derived the amplitude relation AIC = vs both macroscopically and 
microscopically. We can thus introduce the universal amplitude ratio BCIA = rrq. 

Using the relation, we can estimate the exponent q directly. Only by means of the 
scaling analysis of energy-gap data can we obtain the critical point, the exponent U and the 
exponent q. The relation has been confirmed analytically and numerically in three lattice 
models. 
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